Torrent Hash - Hash of all existing torrents
Please, pay attention to the fact that you are about to download the torrent NOT from torhash.net
torhash.net is just a torrent search engine, no torrents are hosted here.
torhash.net is just a torrent search engine, no torrents are hosted here.
MIT SINGLE VARIABLE CALCULUS 18.01
Infohash:
714BC2DD48DF3886D5B1D79CCC9CE55317B7D153
Type:
Movies
Title:
MIT SINGLE VARIABLE CALCULUS 18.01.
Category:
Video/Movie clips
Uploaded:
2010-01-28 (by etefleosc)
Description:
This is a collection of the video lectures from MIT's 18.01 Single Variable Calculus.
This introductory calculus course covers differentiation and integration of functions of one variable, with applications. **Note: Lectures 8, 17, 27, 34 are exams and therefore have no video View the complete course at: http://ocw.mit.edu/18-01F06 License: Creative Commons BY-NC-SA More information at ocw.mit.edu/terms
Tags:
- limits
- continuity
- differentiation rules
- extremum
- problems
- elementary improper integrals
- l\'Holpital\'s rule
- mathematics
Files count:
35
Size:
10601.68 Mb
Trackers:
udp://tracker.openbittorrent.com:80
udp://open.demonii.com:1337
udp://tracker.coppersurfer.tk:6969
udp://exodus.desync.com:6969
udp://open.demonii.com:1337
udp://tracker.coppersurfer.tk:6969
udp://exodus.desync.com:6969
Comments:
etefleosc (2010-01-28)
On the workbench 18.02;18.03;18.06http://ocw.mit.edu/OcwWeb/Mathematics/18-02Fall-2007/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-03Spring-2006/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/index.htm
sexisthecodeoftheroad (2012-08-22)
There are actually two seeds visible on this torrent, however, they're not coming online. So the torrent is stuck at 99.7% ... it would be nice if this *important* torrent could complete so that we could support this one in the future. Thank you!Files:
1. 18.01/Lecture 36 Improper integrals.flv 531.08 Mb
2. 18.01/Lecture 10 Approximations (cont.); curve sketching.flv 335.48 Mb
3. 18.01/Lecture 24 Numerical integration.flv 327.45 Mb
4. 18.01/Lecture 37 Infinite series and convergence tests.flv 325.50 Mb
5. 18.01/Lecture 14 Mean value theorem; Inequalities.flv 322.26 Mb
6. 18.01/Lecture 32 Polar coordinates; area in polar coordinates.flv 320.15 Mb
7. 18.01/Lecture 29 Partial fractions.flv 315.32 Mb
8. 18.01/Lecture 02 Limits, continuity Trigonometric limits.flv 315.27 Mb
9. 18.01/Lecture 28 Integration by inverse substitution; completing the square.flv 314.40 Mb
10. 18.01/Lecture 19 First fundamental theorem of calculus.flv 312.89 Mb
11. 18.01/Lecture 13 Newton's method and other applications.flv 311.81 Mb
12. 18.01/Lecture 18 Definite integrals.flv 309.85 Mb
13. 18.01/Lecture 01 Derivatives, slope, velocity, rate of change.flv 306.57 Mb
14. 18.01/Lecture 30 Integration by parts, reduction formulae.flv 304.61 Mb
15. 18.01/Lecture 27 Trigonometric integrals and substitution.flv 303.08 Mb
16. 18.01/Lecture 21 Applications to logarithms and geometry.flv 301.74 Mb
17. 18.01/Lecture 12 Related rates.flv 299.32 Mb
18. 18.01/Lecture 20 Second fundamental theorem.flv 296.09 Mb
19. 18.01/Lecture 16 Differential equations, separation of variables.flv 294.44 Mb
20. 18.01/Lecture 31 Parametric equations, arclength, surface area.flv 294.42 Mb
21. 18.01/Lecture 22 Volumes by disks and shells.flv 294.28 Mb
22. 18.01/Lecture 25 Numerical integration 2.flv 292.26 Mb
23. 18.01/Lecture 03 Derivatives of products, quotients, sine, cosine .flv 290.44 Mb
24. 18.01/Lecture 33 Polar coordinates; area in polar coordinates(cont) .flv 288.23 Mb
25. 18.01/Lecture 23 Work, average value, probability.flv 286.31 Mb
26. 18.01/Lecture 07 Hyperbolic functions.flv 285.38 Mb
27. 18.01/Lecture 35 Indeterminate forms - L'Hospital's rule.flv 285.25 Mb
28. 18.01/Lecture 38 Taylor's series.flv 282.94 Mb
29. 18.01/Lecture 05 Implicit differentiation, inverses.flv 281.66 Mb
30. 18.01/Lecture 15 Differentials, antiderivatives.flv 280.96 Mb
31. 18.01/Lecture 11 Max-min problems.flv 275.98 Mb
32. 18.01/Lecture 06 Exponential and log ,Logarithmic differentiation,hyperbolic functions.flv 269.09 Mb
33. 18.01/Lecture 09 Linear and quadratic approximations.flv 266.54 Mb
34. 18.01/Lecture 04 Chain rule Higher derivatives.flv 255.74 Mb
35. 18.01/Lecture 39 Final review.flv 224.88 Mb